IRRIMAN – Implementation of Efficient Irrigation Management for a Sustainable Agriculture
Project Overview
The Guadalquivir river basin is in the south of Spain, with a surface area of 57,527 km², including parts of four regions: Andalusia, Castilla-La Mancha, Extremadura and Murcia. Rains in the area are often torrential and fall on lands recurrently affected by long periods of drought and high temperatures, and a marked susceptibility to erosion. In the basin, there are numerous protected areas, with designation of the surface water or groundwater, or for the conservation of habitats and species directly depending on the water. In the Guadalquivir basin, there is chronic water scarcity and available supply for the last 20 years has varied from as little as 20% of demand up to 80-100% in the good years (only one out of three).
The Segura river basin is located in the south east of Spain, with a surface area of about 18 870 km², and covering four regions: practically the whole of Murcia and parts of Andalucia, Castilla-La Mancha and Valencia. Average annual rainfall is about 400 mm, with a very irregular pattern and a clear contrast between the headwater areas and the intermediate and lower parts of the basin.
The Segura river basin is the most water deficient in Spain, and one of the most water deficient in the European Union, with a structural water deficit of about 460 hm3 per year. The amount of water is insufficient to meet consumption, even when there is high water-use efficiency. The Segura basin is the most regulated in Europe, with the implementation of the most modern production systems: drip irrigation, hydroponics, greenhouses, automated irrigation demand and others. However, there is a long way to go to further improve management of the river basin.
Objectives
The project aims to implement an efficient irrigation management schedule for two areas in the Segura Basin and one in the Guadalquivir basin. The project will implement, demonstrate and disseminate a sustainable irrigation strategy for use with woody crops in Mediterranean agro-ecosystems. The strategy will be based on reduction of water supply during non-critical periods, the covering of water needs during critical periods and maximizing yields per unit of applied water.
The project will implement demonstration plots where sustainable irrigation protocols will be applied. Different cropping zones will be selected with the most representative fruit trees, including peach, table grapes, citrus, apricot, early apricot and almond.
Project Results
The project expects to produce the following results:
- Reduction by 30% in water used for irrigation, compared to the current irrigation regime;
- This reduction in water consumption will also reduce the use of chemical fertilizers by 30%, reducing groundwater pollution, and producing an improvement in harvested fruit;
- Reduction in irrigation system energy consumption by 30% because of pressurization; and
- Reduced CO2 emissions: o By 30% as a result of the reduced energy consumption; o By a further 40% because of the reduction in soil CO2 flux rates because of the irrigation technique used.